# Identifying Relevant Scientific Goals in Planetary Exploration

JOHN P. HENNES\* AND CHARLES V. FULMER<sup>†</sup>
The Boeing Company, Seattle, Wash.

The scientific goal of understanding the origin and evolution of the solar system has been examined in terms of the various processes that have led to the development of the solar system, planetary interiors and surfaces, and planetary atmospheres. A scientific rationale for identifying relevant goals and objectives in planetary exploration and an evaluation scheme for making value judgments are outlined and some particular examples are given. Analysis of outer planet exploration missions shows that an orbiter of Jupiter has a scientific value about 4 times that of a flyby of Jupiter and about 0.8 that of a fully instrumented entry probe into Jupiter. Missions and payloads can be selected rationally on the basis of their relevance to our fundamental scientific goals in space. Continued public support of solar system exploration can be encouraged by the participation of the space science community in a logical, publicly visible, and accountable selection analysis.

#### Introduction

THE diminishing pace of the space program and the increasing length and complexity of solar system exploration missions requires that greater effort be put into identifying relevant scientific goals and corresponding scientific measurement techniques and instrument payloads. The exploration of the outer solar system is beginning now. The opportunities for such missions are few and the costs high. Should single flyby "Grand Tours" be made or should effort be put into orbiters and entry probes? The choice of scientific missions or payloads should be based to a greater extent on the relevance of those missions or payloads to the fundamental scientific objectives for going into space, and not just on whether the technology already exists to carry out an experiment or whether something similar has been done before.

There are many reasons for exploring the solar system, including basic human questions of high philosophical and scientific content. The desire to learn where we come from, whether we are alone, or what is our future, has led to the formulation of scientific space goals in terms of answering the questions of the origin and evolution of the solar system, of life, and of the universe.1,2 The task of scientific space program planners is to insure that the national space exploration program best approaches these goals. In this paper, we describe an approach to determining the value of various missions, instrument types, etc., in terms of how well those missions or instruments contribute to one of our nation's fundamental scientific space goals: understanding the origin and evolution of the solar system. Some of the results of this analysis are applied to outer planet missions. Other examinations of solar system exploration goals have also been reported.3-8 The other major space goals (e.g., understanding the origin and evolution of life and of the large-scale universe, and understanding the processes that have shaped man's terrestrial environment) are not explicitly included in the evaluation. They do enter indirectly into the value assigned to some of the basic processes discussed below. A

Presented as Paper 70-1244 at the AIAA 7th Annual Meeting and Technical Display, Houston, Texas, October 19-22, 1970; submitted November 2, 1970, revision received October 27, 1971. Particular recognition should be given to J. R. Thomas, T. F. Greene, and C. D. Clark for their contributions to the development of the rationale approach and the computations and for their critical reviews. Our appreciation also goes to M. L. Reeves, L. G. Despain, and A. J. O'Donnell for their continued support. Index categories: Spacecraft Mission Studies and Economics;

parallel study of astronomical observations has been made<sup>9</sup> using the origin and evolution of the universe as a primary goal. The study reported in this paper should be considered as an example of how our space program can be related to scientific goals and our conclusions, naturally, do not represent a consensus of the national space science community.

## **Solar System Evolution**

Solar system regularities in orbit spacing, rotation periods, mean density, inclination and eccentricity, composition, etc., give some of the pertinent data making up the large body of evidence related to the development of the solar system. Similar collections of evidence can be assembled for the development of each particular planet, their atmospheres, and for the existence of life. Models of solar system development must be capable of explaining the regularities apparent in this evidence. There are, however, no theories of solar system origin and evolution existing today that do provide a comprehensive picture of its development.

Explanations of the origin and evolution of the solar system have followed the growth of our understanding of basic physical processes. Originally, gravitational forces were the only mechanism used to explain the generation of the solar system. Today, chemical and mineralogical processes, magnetic interactions and magnetohydrodynamics, and nuclear physics are also incorporated into solar system models. The most fundamental aspect of man's developing view of the cosmos is the acceptance of the hypothesis that what we now see is the result of a very long evolutionary process. There are no unexplainable features of the solar system which must be postulated, and a theory of natural development is indeed possible and can eventually be made quantitative.

Scientific theories relating to the origin and evolution of the solar system have been put forth since the 17th century. Reviews of the history of such theories are given by Page, <sup>10</sup> TerHaar and Cameron, <sup>11</sup> Witting, <sup>3</sup> and Williams and Cremin. <sup>12</sup> Commentary on more recent theories are also given by Whipple, <sup>13</sup> Cameron, <sup>14</sup> and TerHaar. <sup>15</sup> Theories of solar system origin and evolution can be categorized into two basic types—open and closed. Both theories have had their adherents, although today the closed system is the category being actively investigated. Originators of theories and solar system models and their relationship to these two theoretical categories are shown on Fig. 1.

A rough representation of current conceptions of a possible sequence of events in the formation of the solar system is given in Fig. 2. The figure shows a nebular model and indicates some of the steps or operations that must have acted to produce the solar system. If we examine the various proposed cosmogonical models we find that there are generally

Unmanned Lunar and Interplanetary Systems.

\* Space Sciences, Boeing Scientific Research Laboratories.

<sup>†</sup> Space Physics, Research Division; currently President, Geonics Inc., Seattle, Wash.

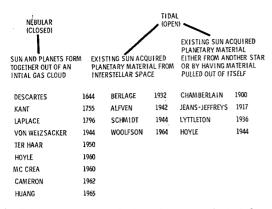



Fig. 1 Solar system cosmologies: the two principal hypotheses with some of the key individuals that have developed major models.

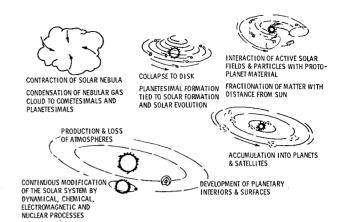
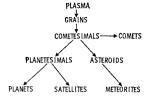



Fig. 2 Solar system formation: conceptual model of the nebular hypothesis indicating major processes that have produced our solar system.

Table 1 Processes operating in the origin and evolution of the solar system

|   |                                                               |                                                              |                                                                   | . DEVELOPMENT                                        | OF THE SOLAR SYSTE                                                 | Mi                                                            |                                                      |                                                                   |
|---|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|
|   | DYNAMICAL CONDENSATION DEVELOPMENT                            |                                                              | CONDENSATION FRACTIONATION                                        |                                                      | SOLAR<br>AND PLASMA                                                | SATELLITES                                                    | SMALL BODIES                                         | SOLAR SYSTEM<br>MODIFICATION                                      |
| ļ | DEVELOPMENT<br>OF<br>CONTRACTING<br>SOLAR NEBULA              | CONDENSATION<br>OF NEBULAR<br>CLOUDS INTO<br>DROPS & GRAINS  | FRACTIONATION<br>OF SOLIDS BY<br>COLLISION                        | GRAVITATIONAL<br>HEATING OF<br>NEBULA & DISK         | EVOLUTION OF<br>SUN TOWARDS<br>MAIN SEQUENCE                       | FORMATION OF<br>SATELLITE<br>DISKS OR RINGS                   | BREAKUP OF<br>PARENT BODIES<br>TO FORM<br>METEOROIDS | LOSS OF<br>SATELLITES BY<br>ESCAPE BREAKUP<br>OR IMPACT           |
|   | COLLECTION OF<br>MATTER INTO<br>NEBULAR DISK                  | GROWTH OF<br>DROPS AND<br>GRAINS INTO<br>COMETESIMALS        | COSMOCHEMICAL<br>FRACTIONATION<br>BY PREFERENTIAL<br>CONDENSATION | SOLAR THERMAL<br>HEATING OF<br>NEBULA & DISK         | CHROMOSPHERIC<br>ACTIVITY IN<br>YOUNG STARS                        | GROWTH OF<br>SATELLITES IN<br>THE DISKS<br>AND RINGS          | VOLCANIC<br>ERUPTION INTO<br>SPACE TO<br>FORM COMETS | ORBIT CHANGES<br>OF SMALL BODIES<br>BY PERTURBATION<br>OR CAPTURE |
|   | TRANSPORT AND<br>ACCUMULATION<br>OF MATTER IN<br>NEBULAR DISK | GROWTH OF<br>COMETESIMALS<br>INTO<br>PLANETESIMALS           | COSMOCHEMICAL<br>FRACTIONATION<br>BY PREFERENTIAL<br>LOSS         | RADIOGENIC AND<br>SOLAR PARTICLE<br>HEATING          | IONIZATION AND<br>DISSOCIATION IN<br>SOLAR NEBULA                  | CAPTURE OF<br>SATELLITES                                      | COMET PRESERVATION AT LIMITS OF SOLAR SYSTEM         | COSMIC RAY<br>PRODUCTION<br>OF ELEMENTS<br>IN METEOROIDS          |
|   | MODIFICATION<br>OF ORBITS                                     | AGGLOMERATION<br>OF<br>PLANETESIMALS<br>INTO LARGE<br>BODIES |                                                                   | MHD AND<br>DISCHARGE<br>HEATING IN<br>NEBULAR GRAINS | COROTATION OF<br>IONIZED MATTER<br>IN MAGNETIC<br>FIELD OF PRIMARY | GENERATION OF<br>SATELLITES BY<br>ROTATIONAL<br>INSTABILITIES |                                                      | CHARGED<br>PARTICLE<br>TRAPPING                                   |
|   | DEVELOPMENT<br>OF ROTATIONAL<br>CHARACTERISTICS<br>OF BODIES  | GRAVITATIONAL<br>ACCRETION<br>BY PLANETS                     |                                                                   |                                                      | PRODUCTION AND<br>TRANSPORT OF<br>ENERGETIC SOLAR<br>PARTICLES     |                                                               |                                                      | ORBITAL AND<br>ROTATIONAL<br>CHANGES BY<br>TIDAL DRAG             |
|   | ESCAPE OF<br>MATTER FROM<br>SOLAR SYSTEM                      |                                                              |                                                                   |                                                      | SPALLATION<br>PRODUCTION OF<br>LIGHT ELEMENTS                      |                                                               | . 1001                                               |                                                                   |


# B. DEVELOPMENT OF INTERIORS AND SURFACES OF BODIES

| INTERNAL<br>STRUCTURE            |                                     |                                                 |                                         | GEOLOGICAL DEVELOPMENT AND MODIFICATION   |                           |                                        |  |  |  |  |  |
|----------------------------------|-------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------|----------------------------------------|--|--|--|--|--|
| GRAVITATIONAL<br>DIFFERENTIATION | GRAVITATIONAL<br>HEATING            | DYNAMO<br>GENERATION OF<br>MAGNETIC FIELDS      | SOLIDIFICATION<br>BY THERMAL<br>COOLING | CONTINENTAL<br>DRIFT                      | SEDIMENTATION             | ATMOSPHERIC<br>EROSION                 |  |  |  |  |  |
| CHEMICAL<br>FRACTIONATION        | RADIOGENIC<br>HEATING               | INDUCTION OF<br>MAGNETIC FIELD<br>BY SOLAR WIND | ACCRETION                               | TECTONISM                                 | METAMORPHISM              | ICE AND WATER<br>EROSION               |  |  |  |  |  |
| PHASE<br>TRANSFORMATION          | CHEMICAL<br>PHASE CHANGE<br>HEATING | TEMPORAL<br>CHANGES IN<br>MAGNETIC FIELD        | TIDAL FLEXING                           | DEFORMATION BY<br>FOLDING AND<br>FAULTING | VOLCANISM                 | METEORITIC<br>EROSION                  |  |  |  |  |  |
|                                  | TIDAL FRICTION<br>HEATING           |                                                 | THERMAL<br>CONVECTION                   | TENSIONAL<br>FRACTURING                   | MODIFICATION<br>BY IMPACT | CHEMICAL<br>AND PHYSICAL<br>WEATHERING |  |  |  |  |  |
|                                  | IMPACT<br>HEATING                   |                                                 | DIFFERENTIAL<br>ROTATION                | ISOSTATIC<br>ADJUSTMENT                   |                           | BIOLOGICAL<br>MODIFICATION             |  |  |  |  |  |
| <u> </u>                         |                                     |                                                 | EXPANSION OR CONTRACTION                |                                           |                           |                                        |  |  |  |  |  |

#### C. DEVELOPMENT OF PLANETARY ATMOSPHERES

| GENERATION                                             | CAPTURE                                 | LOSS                                     | CHEMICAL<br>EVOLUTION                                     | DYNAMICAL<br>8EHAVIOR                      |
|--------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------------------|--------------------------------------------|
| OUTGASSING<br>FROM THE<br>INTERIOR                     | CAPTURE<br>FROM THE<br>SOLAR NEBULA     | THERMAL<br>EVAPORATION                   | CHEMICAL<br>REACTIONS<br>WITH CRUST                       | CIRCULATION<br>OF OCEANS AND<br>ATMOSPHERE |
| PRODUCTION BY<br>COLLISIONAL<br>HEATING AND<br>RELEASE | CAPTURE<br>FROM THE<br>SOLAR WIND       | SOLAR WIND<br>SWEEPING                   | ATMOSPHERIC<br>ELECTRICAL &<br>PHOTOCHEMICAL<br>REACTIONS | LOCAL<br>WEATHER                           |
|                                                        | CAPTURE FROM<br>SOLAR SYSTEM<br>OBJECTS | ESCAPE BY<br>ROTATIONAL<br>INSTABILITY   | BIOLOGICAL<br>REACTIONS                                   | UPPER<br>ATMOSPHERE<br>PROCESSES           |
|                                                        |                                         | DISSIPATION BY<br>COLLISIONAL<br>HEATING |                                                           |                                            |

Fig. 3 Condensation sequence: Stages in solar system evolution resulting from various condensation processes (after Alfven<sup>16</sup>).



no critical tests that can be applied to eliminate any one model or theory. Each theory, because of its looseness, has sufficient freedom to permit incorporation of almost any new observational data. We propose that progress can be made, however, by trying to understand the elements making up the various theories.

These elements are the processes that have operated, and still operate, to produce the present configuration and properties of the solar system from its initial conditions. The processes, for instance, by which the solar nebular material became fractionated to produce dense terrestrial planets and gassy outer planets is a common element of all theories and must be understood in great detail if further progress is to be made in solar system cosmogony. Another set of processes is related to condensation of the planets from the original solar nebula. Figure 3, adapted from Alfven,16 illustrates a sequence of condensation steps. Various condensation processes based on chemical, electromagnetic, and gravitational forces can act to produce the present bodies of the solar system. Any theory of origins combines many processes. What is clear is that a deeper understanding must be reached of the various processes that have operated and are operating in the solar system and that together constitute the actual model history of the solar system.

## **Identifying Scientific Goals**

Space exploration does not permit a direct solution to the problem of the origin and evolution of the solar system. It does permit us to acquire much new quantitative information regarding important observable physical properties of planets and other bodies, and then to relate those observable properties to the dynamic processes that make up the cosmogonical

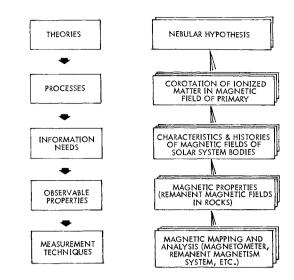



Fig. 4 Descriptive levels of a space exploration rationale, with a single chain example.

models. To clarify these relationships we have established a space science rationale for planetary exploration directed towards the solution of the origin and evolution problems. This approach establishes the relationship between such things as instruments or missions and the physical processes. The method essentially consists of relating the different levels of scientific description, shown diagrammatically in Fig. 4, in terms of the relevancy between the different levels. With this method we can determine the relative value of various missions, measurement techniques, or instrument types. Value in this context is highest for those missions, instrument, etc. that contribute most to achieving the scientific goal.

#### Rationale Terms

A process can be defined as a series of actions or operations producing a continuous change in time of a physical phenomenon. From an examination of all proposed solar system cosmogonical models, we have made a comprehensive list of 82 processes divided into three classes (Table 1). For any

Table 2 Observable properties of the solar system

|          | OBSERVABLES                              | SPECIFIC PROPERTIES                                         | OBSERVABLES                        | SPECIFIC PROPERTIES                                                                                 |     | OBSERVABLES                 | SPECIFIC PROPERTIES                                                           |
|----------|------------------------------------------|-------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|-----|-----------------------------|-------------------------------------------------------------------------------|
|          | ASTROMETRI                               | C PROPERTIES                                                | SURFACE PROPERTIES AI              | ND MINOR BODY PROPERTIES                                                                            |     | " -                         |                                                                               |
| 1.       | ORBITAL PARAMETERS                       | EPHEMERIDES YEAR ECCENTRICITY INCLINATION                   | 10. COMPOSITION                    | CHEMICAL COMPOSITION<br>ISOTOPIC ABUNDANCES<br>RADIOACTIVE COMPOSITION<br>REDOX                     | 18. | MECHANICAL PROPERTIES       | BEARING STRENGTH<br>COHESIVENESS<br>ANGLE OF REPOSE                           |
| 2,       | PLANETARY MOTIONS                        | ROTATIONS<br>WOBBLE                                         | 11. MAGNETIC PROPERTIES            | MAGNETIC SUSCEPTIBILITY<br>LOCAL FIELD VARIATIONS                                                   | 19. | STRUCTURAL PROPERTIES       | FRACTURE FOLD STRUCTURE FAULT STRUCTURE                                       |
| _        |                                          | NUTATIONS<br>LIBRATIONS                                     |                                    | REMANENT MAGNETIC FIELD<br>COMETARY MAGNETIC FIELD<br>STRUCTURE                                     |     | FORMATIONS                  | STRATIGRAPHY<br>LITHOLOGY                                                     |
|          | INTERIOR OR B                            | ULK PROPERTIES                                              | 12. THERMAL PROPERTIES             | TEMPERATURES                                                                                        | 21. | TOPOGRAPHIC PROPERTIES      | ELEVATION<br>CURVATURE                                                        |
| 3.<br>4. | BULK MAGNETIC FIELDS  OPTICAL DIMENSIONS | MAIN MAGNETIC FIELD<br>FIELD VARIATIONS<br>FIGURE           |                                    | TEMPERATURE GRADIENTS THERMAL CONDUCTIVITY SPECIFIC HEAT HEAT FLOW                                  |     |                             | LAND FORMS CRATERS BLOCKS RIDGES                                              |
| ٦.       | OF TICAL DIMENSIONS                      | SIZE FLATTENING COMETARY DIMENSIONS                         | 13. SURFACE OPTICAL                | EMISSIVITY THERMAL EMISSION COLOR                                                                   | 22. | PHYSIOGRAPHIC<br>PROPERTIES | PROFILES<br>SLOPES<br>BASINS                                                  |
| 5.       | GRAVITATIONAL<br>PROPERTIES              | MASS<br>GEOID OR MASS<br>DISTRIBUTION<br>MOMENTS OF INERTIA | PROPERTIES                         | ALBEDO, LOCAL AND GLOBAL<br>LUMINESCENCE<br>FLUORESCENCE<br>TONAL VARIATION<br>PHOTOMETRIC FUNCTION | 23. | AGES                        | ROUGHNESS  RELATIVE AGES OF ROCKS  RELATIVE AGES OF FEATURES RADIOSOTOPE AGES |
| 6.       | MEAN DENSITY                             | SURFACE GRAVITY FIELD MEAN DENSITY                          | 14. SURFACE IRRADIATION PROPERTIES | SOLAR SPECTRAL IRRADIANCE                                                                           | 24. | TEXTURAL PROPERTIES         | FABRIC<br>PATTERNS                                                            |
| 7.       | THERMAL BUDGET                           | ENERGY INPUT<br>ENERGY OUTFLOW                              | 15. PETROGRAPHIC PROPERTIES        | RADIATION ENVIRONMENT MINEROLOGY CRYSTALLOGRAPHY                                                    |     |                             | DISCONTINUITIES SURFACE POSITIONS COMETARY TAIL PATTERNS                      |
| 8.       | INTERNAL STRUCTURE                       | MANTLE-CORE-CRUST<br>DENSITY<br>COMETARY STRUCTURE          | 16. ELECTRICAL PROPERTIES          | CONDUCTIVITY RESISTIVITY ELECTRIC FIELDS                                                            | 25. | HYDROLOGICAL<br>PROPERTIES  | MOISTURE PERMAFROST GROUND WATER                                              |
| 9.       | SEISMIC PROPERTIES                       | GROUND TREMORS MICROSEISMS QUAKES TRAVEL TIMES              | 17. PHYSICAL PROPERTIES            | ION CONTENT  PARTICLE SIZES  POROSITY  PERMEABILITY                                                 | 26. | VOLCANIC PROPERTIES         | GLACIATION FLOWS OUTGASSING SUBLIMATES                                        |
|          |                                          |                                                             |                                    | DENSITIES<br>SORTING                                                                                | 27. | OCEANOLOGICAL<br>PROPERTIES | WAVES TIDES COMPOSITION TEMPERATURE                                           |
|          |                                          |                                                             |                                    |                                                                                                     | 28. | BIOLOGICAL PROPERTIES       | BIOLOGICAL PROPERTIES                                                         |

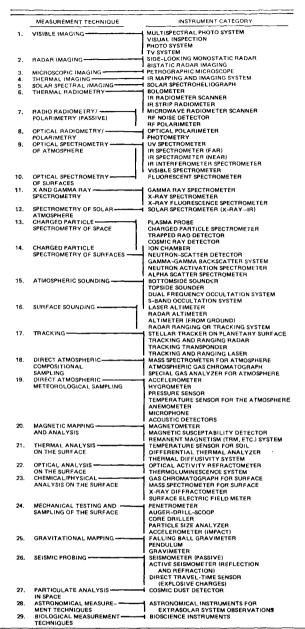
Table 2 (continued)

|     | OBSERVABLES                          | SPECIFIC PROPERTIES                                                      |     | OBSERVABLES                                    | SPECIFIC PROPERTIES                                                                                      |     | OBSERVABLES                    | SPECIFIC PROPERTIES                                                   |  |  |
|-----|--------------------------------------|--------------------------------------------------------------------------|-----|------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|--------------------------------|-----------------------------------------------------------------------|--|--|
|     | PLANETARY ATMOSPHERIC PROPERTIES     |                                                                          |     | EXTRACTMOSPHERIC AND INTERPLANETARY PROPERTIES |                                                                                                          |     | SOLAR AND STELLAR PROPERTIES   |                                                                       |  |  |
| 29. | ATMOSPHERIC COMPOSITION              | CHEMICAL COMPOSITION ISOTOPIC ABUNDANCES ION CONTENT                     | 40. | MAGNETIC FIELDS IN SPACE                       | FIELDS<br>VARIATIONS                                                                                     | 49. | SOLAR EMISSIONS                | OPTICAL EMISSIONS X-RAY EMISSION RADIO EMISSION                       |  |  |
| 30. | ATMOSPHERIC THERMAL PROPERTIES       | TEMPERATURE THERMAL EMISSION RELEASED HEAT                               |     | PROPERTIES                                     | COMPOSITION<br>FLUX<br>SPECTRUM                                                                          | 50. | SOLAR MAGNETIC<br>PROPERTIES   | LOCAL MAGNETIC FIELDS<br>POLARITY CHANGES                             |  |  |
| 31. | ATMOSPHERIC PRESSURE                 | PRESSURE                                                                 | 42. | SOLAR PLASMA PROPERTIES                        | COMPOSITION<br>DENSITY                                                                                   | 51. | SOLAR SUNSPOTS<br>AND FLARES   | LOCATIONS<br>GROWTH                                                   |  |  |
| 32. | ATMOSPHERIC DENSITY                  | DENSITY                                                                  | i   | i                                              | VELOCITY                                                                                                 | 1   | AND FLARES                     | SIZE                                                                  |  |  |
| 33. | ATMOSPHERIC MOISTURE                 | HUMIDITY<br>PRECIPITATION                                                |     | SOLAR PARTICLE EVENT                           | TEMPERATURE<br>PRESSURE                                                                                  |     |                                | TEMPERATURE<br>MASS LOSS<br>ETC.                                      |  |  |
| 34. | ATMOSPHERIC PARTICLES                | CLOUDS<br>AEROSOLS<br>DUST                                               | 43. | PROPERTIES  TRAPPED RADIATION                  | COMPOSITION FLUX SPECTRUM COMPOSITION                                                                    | 52. | SOLAR ACTIVE REGION PROPERTIES | LOCATIONS GROWTH PARTICLE DYNAMICS                                    |  |  |
| 35. | ATMOSPHERIC MOTIONS                  | WIND FIELD<br>CIRCULATION PATTERNS                                       | "   | PROPERTIES                                     | FLUX<br>SPECTRUM                                                                                         | 53. | SOLAR GRANULATION              | CELL DIMENSIONS<br>GRANULARITY                                        |  |  |
| 36. | ATMOSPHERIC ELECTRICAL<br>PROPERTIES | ELECTRICAL FIELDS<br>DISCHARGES<br>RADIO EMISSION<br>EM-WAVE PROPAGATION | 45. | COSMIC DUST PROPERTIES                         | PITCH ANGLE<br>ALBEDO PARTICLES<br>COMPOSITION<br>MINEROLOGY                                             | 54. | SOLAR ATMOSPHERIC<br>MOTIONS   | SUPERGRANULARITY WAVELENGTHS VELOCITIES WAVE NUMBERS (REYNOLDS, ETC.) |  |  |
| 37. | IONOSPHERIC PROPERTIES               | ELECTRON DENSITY TRANSPORT RATES VARIATIONS                              |     |                                                | DENSITIES FLUX VELOCITY DISTRIBUTION INFLUX RATE                                                         | 55. | ASTRONOMICAL PROPERTIES        | INTERSTELLAR                                                          |  |  |
| 38. | ATMOSPHERIC OPTICAL<br>PROPERTIES    | ATTENUATION<br>AURORA<br>AIRGLOW                                         | 46. | SOLAR ROTATION                                 | ROTATION DIFFERENTIAL ROTATION                                                                           |     |                                | OTHER EXTRASOLAR PROPERTIE                                            |  |  |
| 39. | EXOSPHERIC PROPERTIES                | TEMPERATURE<br>DENSITY<br>COMPOSITION                                    | 47. | SOLAR BULK PROPERTIES                          | OPTICAL FIGURE MASS MASS DISTRIBUTION MEAN DENSITY                                                       |     |                                |                                                                       |  |  |
|     |                                      |                                                                          | 48. | SOLAR ATMOSPHERIC<br>PROPERTIES                | CHEMICAL COMPOSITION ISOTOPIC ABUNDANCE TEMPERATURE TEMPERATURE GRADIENTS SCALE HEIGHTS PRESSURE DENSITY |     |                                |                                                                       |  |  |

process, the emphasis is on the continuing action and not on the end points, which are the physical conditions at any given time. As we have seen, the nebular theory of the origin of the solar system is made up of a variety of processes operating on the original nebular cloud.

A process cannot be understood by making single observations of a system as it exists now. A sequence of observations in time, like a motion picture of a dynamic system, is needed to determine the continuing action of the process. In most cases there are no unique physical properties which reveal the nature of a process. Instead, information is needed about a variety of physical phenomena. To understand the process of how a satellite such as the moon might be captured, we need information about earth's rotational history, tidal drag and tidal histories, thermal histories, and so on. These information needs cannot be satisfied with a single observation. They are concerned with characteristics and histories of physical systems and deal with more generalized physical concepts than a specific physical property. Information needs may deal with such diverse matters as the characteristics and history of orbits, erosion features on the surface, and sinks or sources of atmospheric constituents. Many information needs have been identified but because of lack of space the complete table has been omitted here. The use or omission of a particular category or level of scientific description shown in Figure 4 is discussed in the next section.

The history of earth's rotation<sup>17</sup> is not directly observable. And yet, the observable physical properties of an object are the only parameters that we can determine directly. Our scientific techniques deal only with what exists now, the physical properties intrinsic to the system under study. Any information needed can thus only come from determining several observable physical properties, as listed in Table 2. The next step in our rationale approach is therefore to determine those various observable properties that contribute to acquiring the information needed to understand a process.


If the observable properties are established, then the connection of this logical sequence of scientific concepts to the space science exploration program becomes much simpler. A space exploration mission is designed to acquire quantitative information regarding the observable physical properties of an object, such as a planet, whereas it is not designed to prove a theory or establish any particular process.

Observable properties are determined by the application of various scientific measurement techniques. Measurement techniques are given in Table 3. It is important to distinguish between measurement techniques and instruments. The technique is what allows a correspondence to be drawn between the observable property intrinsic to the external physical system, and the instrument reading that is a part of the particular instrumental characteristics. A spectrometer, for instance, does not measure composition of an external source; it provides spectral data. The techniques of spectrometry allow the spectral data to be interpreted variously as composition, temperature, or pressure. The purpose of a spacecraft mission is to allow a variety of techniques to be applied. Finally, for each measurement technique, there are various instrument types that can be used with that technique (see also Table 3).

## Space Exploration Evaluation

Having identified the space exploration rationale terms above, we must next describe how the quantitative elements of each step can be determined by a simple evaluation technique. Each process can be assigned a value describing the relative importance of the process in the cosmological scheme of things. This value,  $V_p$ , can only be assigned on a judgmental basis since it represents a disputable part of a larger cosmological theory. For example, the process by which the sun evolves toward a main sequence star is obviously of great importance to every nebular hypothesis but of lesser importance to an open system model in which the sun is postulated as pre-existing the formulation of a protoplanetary cloud. For each process there are a number of information needs which must be satisfied if the process is to be understood. Some information needs are highly relevant to understanding a process while others are less relevant. For example, in the preceding section the earth's rotational history was given as an information need related to the process of capture of satellites. If the moon was captured, then its tidal effect on the earth's rotation rate at the time of capture and thereafter would have been dramatic, and this highly relevant information should be recorded in the earth's geological history. We may define a relevancy factor,  $R_{np}$ , that describes numerically

Table 3 Measurement techniques and instrument categories for the exploration of the solar system



the relevance of a particular information need, n, to capture process, p. In the example cited  $R_{np}$  would be large.

In this fashion we can relate each information need to each process by some relevancy factor,  $R_{np}$ ; many would have zero relevance, of course. By summing the product of relevance of a given information need, n, to every process, p, with the relative value of the process,  $V_p$ , we then have a number that indicates the relative value of n,  $V_n$ . Figure 5 indicates this relationship and shows for each of the other steps a relevancy exists and a relative value can be computed. The value of the measurement technique,  $V_m$ , represents one possible end point of this sequence. Notice that these expressions are simply matrix multiplications of the relevancy matrices. The terms can thus be combined stepwise; for example,

$$R_{on}R_{np}=R_{op}$$

or

$$V_m = \sum_p R_{mp} V_p$$

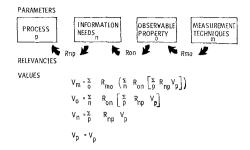



Fig. 5 Determining the value of entries in different levels of space exploration rationale requires associating a relevance between entries and a matrix combination of terms.

To assess the relevance  $R_{mp}$  of a particular measurement technique to a particular process, however, requires a large step in intuitive judgment covering many intermediate relationships. The approach of this study has been to break this large step into several smaller steps so that judgments can be made more easily, and traceability and visibility enhanced. In this way a variety of views of space scientists in specialized fields can be displayed and integrated into a total evaluation program.

Figure 6 is an abbreviated numerical example of the space rationale evaluation described above. The first five items in each category are given (i.e., process, information need, observable, and measurement technique), and the relevancy matrices are filled with sample numbers for illustrative purposes. The value, as computed from the expressions given in Fig. 5, is then given for  $V_n$ ,  $V_o$ , and  $V_m$ .

The scheme proposed here is a straightforward evaluation method. The principal difficulty of an evaluation of this type is that it must encompass a vast range of scientific material in a finite display so that the relationships can be grasped. The result is that a great deal of weight is put on the scientific judgment of the person assigning relevance factors at each step.

As the evaluation steps proceed clockwise around the categories and relevancy matrices of Fig. 6 the subject matter is made more specific. The relevance of visible imaging of the giant planets from an orbiter cannot be the same as from an entry probe, for instance. In addition, the relevance, and thereby the derived value, at each step is dependent on assumptions concerning previous steps.

The relevance of various information needs to the different processes are dependent on the cosmological views of solar system origins. The primary role of the nebular hypotheses is reflected in the process values,  $V_p$ , used in this study. Observable properties, however, are not only dependent on the cosmological assumptions making up the process values but are also dependent on similar kinds of assumptions about various bodies making up the solar system. For instance, the relevance of determining the gravitational properties of the satellites of Jupiter is partly dependent on our view of the cosmological significance of the satellite. As will be mentioned in the Results section, the satellites of the giant planets can be viewed as natural planetary systems and the significance of observations of them must reflect this view.

Notice that in the evaluation carried out here the quantity of information or number of data bits is not included. The emphasis is on the "usefulness" of the information. This emphasis comes in through the assignment of the relevance factors, a difficult subjective judgment. Subjectivity is inherent in all evaluation schemes. The background for the choice of processes and other concepts and a more complete description of the space exploration rationale analysis are contained in Ref. 18.

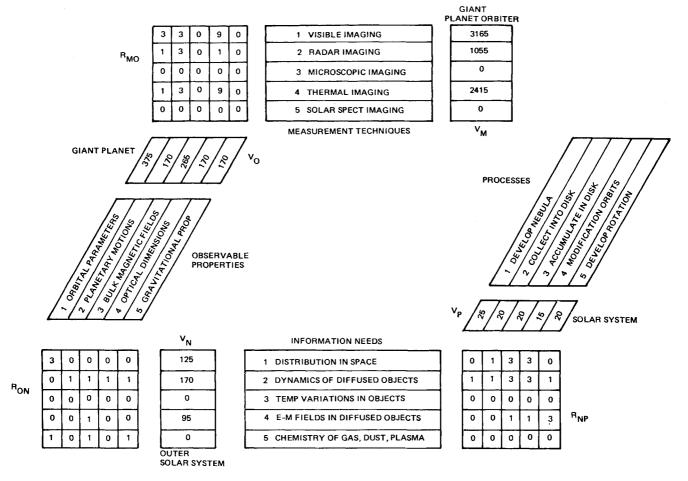



Fig. 6 A numerical example of the space rationale evaluation: clockwise steps combine relevance matrices with values to generate the value of the next level. Each level is more specific.

# **Outer Planet Exploration**

The outer planet exploration opportunities coming in the late '70's provide man's best and rarest opportunity to obtain some firsthand information about the major bodies of the solar system—the giant planets Jupiter, Saturn, Uranus, Neptune and their major satellites. <sup>19</sup> Jupiter alone is equivalent to an entire solar system with its massive, gassy primary, and extended system of satellites. With few opportunities existing to explore the outer planets, what should be the scientific exploration program to best clarify our understanding of the origin and evolution of the solar system? To explore some of these possibilities and to illustrate the space exploration rationale analysis technique described in the preceding sections we have made a study of the scientific basis of missions to the outer planets.

#### Approach

The objective of this study has been to determine, for various targets in the outer solar system, the relative value of the observable properties and of the measurement techniques listed in Tables 2 and 3. The targets chosen are a) giant planets, b) Saturn's rings, c) satellites (of the giant planets) and Pluto, d) interplanetary space, and e) deep space (interplanetary plus out-of-the-ecliptic or out-of-the-solar system). Each process in Table 1 was assigned a value,  $V_p$ , indicating its relative importance in constructing a cosmogonical model. This value, which is an intuitive assignment, is a combination of the intrinsic importance of the process and how well the process is already understood. Values have been assigned from 5 to 50.

Because of the limited nature of the example study used here as an illustration of the rationale approach, we have chosen to eliminate the intermediate step of determining information needs. As described previously, this is possible because the relevance of an observable o to a process p is simply the product of the relevance of information need n to process p times the relevance of observable o to information need n

$$R_{op} = R_{on}R_{np}$$

In this study, we have used the following scale of relevance:

$$R_{mo}$$
 and  $R_{op} = 0, 1, 3, 9$ 

Other relevancy scales could be chosen, such as linear scale of 0, 1, 2, 3 or a log scale of 0, 1, 10, 100. Some preliminary use of these scales indicates that the resulting rankings are not excessively sensitive to relevance scaling.

The computational scheme given in Fig. 5 is then used to determine the value of any particular observable property  $V_o$  or of some measurement technique  $V_m$ . In carrying out this analysis, a complete matrix display of the relevance of 55 possible observables (Table 2) to 83 processes (Table 1) was needed for each of the five targets listed previously. A similar set of steps was carried through for the measurement techniques but with separate evaluations needed for separate exploration modes such as flyby, orbiter, probe, or lander as appropriate.

# Results

The results of the computer calculations of values  $V_o$  and  $V_m$  are given in Tables 4 and 5, respectively. Table 4 identifies the value  $V_o$  (divided by 100) of the observable properties

Table 4 Value of scientific objectives for the outer solar system

|          | OBSERVABLE PROPERTY                                                  | GIANT PLANETS | INTERPLANETARY | DEEP SPACE<br>+ INTERPLANETAR | SATURN'S RINGS | MAJOR<br>SATELLITES |
|----------|----------------------------------------------------------------------|---------------|----------------|-------------------------------|----------------|---------------------|
| 29       | CHEMICAL AND ISOTOPIC COMPO-<br>SITION OF ATMOSPHERES                | 72            |                |                               |                | 22A                 |
| 28       | BIOLOGICAL PROPERTIES                                                | 46            |                |                               |                | 16                  |
| 10       | COMPOSITION OF THE BULK PLANET AND SURFACE                           | 27            |                |                               | 5              | 21                  |
| 33       | ATMOSPHERIC MOISTURE, PRECIPITATION, ETC.                            | 22            |                |                               |                | 14A                 |
| 30       | ATMOSPHERIC TEMPERATURES AND THERMAL PROPERTIES                      | 21            |                |                               |                | 7A                  |
| 5        | GRAVITATIONAL PROPERTIES<br>(MASS, MOMENTS, DISTRIBUTION)            | 16            |                |                               | 2              | 11                  |
| 3        | BULK MAGNETIC FIELDS                                                 | 13            |                |                               |                | 7                   |
| 32       | ATMOSPHERIC DENSITY                                                  | 13            |                |                               |                | 8A                  |
| 31       | ATMOSPHERIC PRESSURE                                                 | 13            |                |                               |                | 5A                  |
| 2        | PLANETARY ROTATION AND OTHER MOTIONS                                 | 12            |                |                               |                | 4                   |
| 7        | THERMAL ENERGY BUDGET                                                | 11            |                |                               |                | 2                   |
| 8        | INTERNAL STRUCTURE                                                   | 10            |                |                               |                | 9                   |
| 40       | MAGNETIC FIELDS IN INTER-<br>PLANETARY AND MAGNETÓ-<br>SPHERIC SPACE | 9             | 6              | 13                            | 1              | 5                   |
| 4        | OPTICAL DIMENSIONS OF<br>SIZE AND SHAPE                              | , 9<br>i 9    | •              | 13                            | 2              | 3                   |
| 35       | ATMOSPHERIC MOTIONS                                                  | ٩             |                |                               | -              | 2A                  |
| 44       | TRAPPED RADIATION PROPERTIES                                         | 8             |                |                               |                | 1                   |
| 6        | MEAN DENSITIES                                                       | 7             |                |                               |                | 13                  |
| 39       | EXOSPHERIC PROPERTIES                                                | 7             |                |                               |                | 2A                  |
| 12       | THERMAL PROPERTIES OF THE DEEP ATMOSPHERE AND MAIN BODY              | 5             |                |                               |                | 5                   |
| 38       | ATMOSPHERIC OPTICAL PROPERTIES                                       | 5             |                |                               |                | 1A                  |
| 34       | ATMOSPHERIC CLOUDS, AEROSOL<br>AND DUST PROPERTIES                   | 4             |                |                               |                | 1A                  |
| 1        | ORBITAL PARAMETERS OF PLANETS AND SATELLITES                         | 4             | 3              | 3                             | 6              | 3                   |
| 13       | SURFACE OPTICAL PROPERTIES                                           | 4             |                |                               | 1              | 3                   |
| 26       | VOLCANIC PROPERTIES                                                  | 4             |                |                               |                | 4                   |
| 23       | AGES OF ROCKS, FEATURES, ETC.                                        | 4             |                |                               | 2              | 16                  |
| 45       | COSMIC DUST PROPERTIES                                               | 3             | 3              | 5                             |                | 3                   |
| 9<br>11  | SEISMIC PROPERTIES  MAGNETIC PROPERTIES OF                           | 3             |                |                               |                | 7                   |
|          | SURFACE MATTER                                                       | 3             |                |                               | 2              | 3                   |
| 37<br>42 | IONOSPHERIC PROPERTIES SOLAR PLASMA PROPERTIES IN                    | 3             |                |                               |                | < 1A                |
| 21       | NEAR-PLANET AND DEEP SPACE<br>TOPOGRAPHIC PROPERTIES                 | 2             | 6              | 9                             |                | 1                   |
| 22       | OF SURFACES PHYSIOGRAPHIC PROPERTIES                                 | 2 2           |                |                               |                | 12<br>8             |
| 41       | GALACTIC COSMIC RAY PROPERTIES                                       | 2             | 2              | 3                             |                | < 1                 |
| 43       | SOLAR PARTICLE EVENT PROPERTIES                                      | 1             | 3              | 6                             |                | 1                   |
| 24       | TEXTURAL PROPERTIES                                                  | < 1           |                |                               |                | 9                   |
| 15       | PETROGRAPHIC PROPERTIES                                              | < 1           |                |                               | 2              | 7                   |
| 20       | FORMATIONS                                                           | < 1           |                |                               |                | 5                   |
| -        | OTHER PROPERTIES                                                     | 2             | 2              | 1                             | 5              | 17                  |

A - VALUE ASSUMING SOME ATMOSPHERE EXISTS

listed for the five outer-planet targets. Table 5 identifies the value  $V_m$  (divided by 1000) of the 29 measurement techniques listed for the same five outer-planet targets along with various operation modes—vis., flyby, orbiter, and probes. There are several qualifications that should be noted in using these tables.

- a) Giant planets In this study the Jovian planets were assumed to be essentially fluid with no or minimal solid characteristics. In this sense they are like small stars. As a result, observables and measurement techniques related to atmospheres are emphasized over observations of possible deep interfaces on these giant planet producing such features as Jupiter's red spot.
- b) Satellites/Pluto The satellites constitute a small fraction of the mass of the solar system but share many of its features.

We have taken the position (such as held by Alfven<sup>20</sup>) that the major satellites of Jupiter, Saturn, and Uranus are the result of processes paralleling those that formed the entire solar system. Thus, a study of these satellite systems is in some ways of almost equal importance to a study of all the planets. Pluto, small and dense, is treated here as equivalent to another satellite, which perhaps it is according to the hypothesis that it represents an escaped satellite of Neptune. The assumption has been made that the largest satellites, such as Titan, have thin or frozen atmospheres and observations of these are given relatively high weighting. If such atmospheres are not present, then the value of the corresponding observables, indicated by the letter A in Table 4, will become smaller.

- c) Saturn's rings The rings of Saturn are here treated as primary objects in the solar system. That is, they are assumed to have existed in this form since the beginning rather than being a result of a recent breakup. They could thus exhibit, on a small scale, characteristics reflecting some of the early processes of dynamical evolution that produced the regular solar system features now present. A slow flythrough with particle collection is assumed.
- d) Interplanetary space Fields and particles, cosmic dust, meteoroids and asteroids all come in this category. It was assumed that there is no close encounter with an asteroid.
- e) *Deep space* This category assumes an interplanetary phase plus passage to very distant regions of the solar system (>50 a.u.) or out of the ecliptic plane.

#### **Conclusions**

Scientific objectives of the outer planet exploration program can now be reduced to the determination of those observable properties ranked highest in Table 4. The objectives recommended by the Space Science Board<sup>19</sup> are indeed similar to this listing. It is from such a list of objectives that specific missions and payloads should be derived. The conclusions reached in this study are based on the evaluative judgment of just a few individuals. For a more comprehensive evaluation, a national cross-section of space scientists from a variety of fields should share in the judgments of relevance so that the full implications of each step are included in the values determined. In this way, after suitable refinement, an evaluation would result that represented a truly integrated and visible display of the rational direction for our national space program.

#### Observables

The values of the observables are given in Table 4. The summation at the bottom, although not necessarily equivalent to over-all value, indicates that exploration of the major satellites is of comparable importance to exploration of the giant planets themselves. Interplanetary observations are seen to be of minor importance compared with either planetary or satellite exploration. Hence, relatively low-cost Explorer or Pioneer-type spacecraft should be looked to for the bulk of interplanetary and deep space exploration. It can be seen in Table 4 that for all objects, knowledge of composition ranks very high. For Jupiter and the giant planets, the atmosphere is essentially all we can observe and thus atmospheric composition ranks very high. Similarly, other atmospheric properties rank relatively high for the gassy giant planets while surface observables are zero or low because the existence of a surface is doubtful and its observation extremely difficult.

For both satellites and giant planets, the bulk properties have medium-high values as they reveal many of the basic characteristics of the bodies and are related directly to many processes. For the satellites, high value also appears in many surface observables (topography, seismic properties, etc.) because of what they reveal about planet development.

Table 5 Relative scientific value of measurement techniques for missions to the outer solar system

|                                                  |                    | PLANET     | ANT PLANT | a land      | Se Ario  | Ser Jir | St.      | J. The   | Market and |
|--------------------------------------------------|--------------------|------------|-----------|-------------|----------|---------|----------|----------|------------------------------------------------|
| MEASUREMENT TECHNIQUE                            | \[ \si_{\si_{\si}} | ANT PLANET | ANT PLET  | STANT PLANT | STIPPING | Strift  | Att Life | STEPLE . | Meters Office 2                                |
| SPECTROSCOPY OF THE ATMOSPHERE (9)               | 22                 | 71         | 163       | 2           | 8        | 38      | 38       |          |                                                |
| OPTICAL RADIOMETRY/POLARIMETRY (8)               | 11                 | 15         | 13        | 1           | 6        | 12      | 11       | 2        | 3                                              |
| RADIO RADIOMETRY/POLARIMETRY (7)                 | 10                 | 35         | 6         | < 1         | 1        | 3       | 1        |          |                                                |
| MAGNETIC MAPPING (20)                            | 8                  | 23         | 3         | 1           | 1        | 16      | 8        | 15       | 25                                             |
| ATMOSPHERIC SOUNDING (15)                        | 7                  | 30         | 25        | < 1         | 7        | 20      | 4        |          |                                                |
| THERMAL RADIOMETRY (6)                           | 7                  | 25.        | 5         | < 1         | 1        | 12      | 3        |          |                                                |
| TRACKING (17)                                    | 6                  | 38         | 5         | 2           | 3        | 26      | 4        | 5        | 9                                              |
| PARTICLE SPECTROSCOPY IN SPACE (13)              | 5                  | 22         | 2         | 1           | 1        | 5       | 1        | 7        | 22                                             |
| SURFACE SOUNDING (16)                            | 5                  | 26         | 4         | 3           | 3        | 12      | < 1      |          |                                                |
| GRAVITATIONAL MAPPING (25)                       | 5                  | 24         | 3         |             | 3        | 25      | '9       |          |                                                |
| RADAR IMAGING (2)                                | 4                  | 21         | 5         | 4           | 8        | 46      | 12       |          | 4                                              |
| VISIBLE IMAGING (1)                              | 4                  | 28         | 4         | 4           | 8        | 64      | 35       | 6        | 8                                              |
| THERMAL IMAGING (4)                              | 4                  | 22         | 3         | 3           | 6        | 23      | 4        |          |                                                |
| X-GAMMA RAY SPECTROSCOPY (11)                    | 2                  | 2          | 3         | < 1         | 2        | 8       | 10       |          |                                                |
| DIRECT ATMOSPHERIC SAMPLING (18)                 | <1                 | < 1        | 130       | 5           |          |         | 38       |          |                                                |
| PARTICULATE ANALYSIS (27)                        | <1                 | 3          |           | 5           | <1       | 1       | < 1      | 4        | 5                                              |
| ATMOSPHERIC METEOROLOGY (19)                     |                    |            | 50        |             |          |         | 22       |          |                                                |
| BIOLOGICAL SAMPLING (29)                         |                    |            | 41        |             |          |         | 17       |          |                                                |
| MICROSCOPIC IMAGING (3)                          |                    |            | 17        | 4           |          | 1       | 13       |          |                                                |
| CHEMICAL AND PHYSICAL ANALYSES (23)              |                    |            |           | 7           |          | < 1     | 43       |          |                                                |
| PARTICLE SPECTROMETRY OF SURFACES (14)           |                    |            |           | 1           |          | 2       | 16       |          |                                                |
| OPTICAL SPECTROSCOPY OF SURFACES (10)            |                    |            |           |             | 3        | 17      | 20       |          |                                                |
| THERMAL ANALYSIS OF SURFACE (21)                 |                    |            |           |             |          |         | 16       |          |                                                |
| OPTICAL ANALYSIS ON THE SURFACE (22)             |                    |            |           |             |          |         | 15       |          |                                                |
| SEISMIC PROBING (26)                             |                    |            |           |             |          |         | 15       |          |                                                |
| MECHANICAL TESTING AND SAMPLING (24)             |                    |            |           |             |          |         | 7        |          |                                                |
| <b>Σ</b> <sup>∨</sup> M                          | 101                | 386        | 482       | 45          | 61       | 331     | 361      | 39       | 76                                             |
| $(\overline{\Sigma}^{\vee_{M}^2})^{\frac{1}{2}}$ | 32                 | 116        | 221       | 13          | 19       | 105     | 94       | 19       | 36                                             |

## Measurement Techniques

The values of the measurement techniques in Table 5 are naturally related to the values of the observables they determine. Because of the emphasis on composition, spectroscopy ranks very high as a technique. Mass spectrometry or other direct compositional sampling techniques (Nos. 18 and 23) also rank high for probes and landers. For the giant planets, atmospheric techniques are all-important. The assumption that there is no accessible surface and therefore no long-term stable details of planetary features, other than the slowly changing great red spot of Jupiter, greatly reduces the value of imaging systems. The value they retain arises from their use in observation of atmospheric motions and patterns, planetary size and motions, etc. Not included is any judgment of the value of pictures to satisfy human curiosity. For the satellites, imaging has a very high value as it has with our own moon. Some of the measurement techniques with significant value for satellite observations, such as atmospheric sounding or spectroscopy, are based on the assumed presence of a thin atmosphere. In the absence of any atmosphere those items would either vanish or have greatly reduced value.

Note that the order of rank for orbiter techniques is not the same as for flyby. Repeated observations from orbit increase the usefulness of some techniques (imaging, tracking, etc.) more than others. Many measurement techniques are redundant, while others may be complementary. Visual imaging and radar imaging have large overlap in data returned, for instance, while magnetic mapping and charged particle mapping are strongly reinforcing. The mutual dependence of measurement techniques is not explicitly handled in the rationale scheme proposed here and this is a weakness of all quantitative space mission judgment proposals. In carrying out this study, value was determined with the assumption that any essential, mutually reinforcing observations would also

be available. Particles and fields observations turn out to be of high value only when the interplanetary cruise portion of a mission is added to the planetary encounter portion.

#### Missions

Because of the overlap in instrument functions it is difficult to determine the total value of any particular mission type. If a spacecraft were to employ all of the measurement techniques listed then the total value might be proportional to the linear sum of the individual values. These summations were given in Table 5 and are repeated, normalized to 1.0 for a giant planet flyby, in Table 6. Because the measurement techniques are not all independent other methods of computing mission value might be used. Table 5 also gives a root sum of the squares value. Although lower in absolute value than the linear sum, the relative ranking of the missions is essentially the same as in Table 6.

The high value of the entry probe is traceable to its ability to obtain compositional data. Orbiter techniques may be

Table 6 Relative value of outer-planet mission types

| Giant planet entry probe | 4.8 |
|--------------------------|-----|
| Giant planet orbiter     | 3.8 |
| Satellite lander         | 3.6 |
| Satellite orbiter        | 3.3 |
| Giant planet flyby       | 1.0 |
| Deep space probe         | 0.8 |
| Satellite flyby          | 0.6 |
| Interplanetary probe     | 0.4 |
| Saturn fly-thru          | 0.4 |
|                          |     |

incapable of obtaining data from a depth sufficient to represent the actual gross atmospheric composition. The importance of entry probes as identified here is in contrast to the current discussion of outer planet missions where, despite the Space Science Board's urgings, 19 only flybys and, secondarily, orbiters are being considered.

The importance of satellite observations is also evident in the tables. These too are not a significant part of current planning. However, a grand tour of a close encounter with a major satellite of each planet would be of value almost equal to a grand tour of their primaries.

Launch opportunities for Jupiter orbiters, Jupiter entry probes, Io landers, etc. exist every 13 months, but opportunities for similar investigative missions to Saturn, Uranus, and Neptune are going to be rare. More consideration needs to be given to making even minimal investigations of Uranus, Neptune and their satellites by means of probes or orbiters during the Grand Tour period. Such a course would have to assume that regular opportunities to explore Jupiter and Saturn would also be used.

## Summary

The capability of making rational, visible judgments or comparisons of missions and payloads should not be neglected. The particles and fields emphasis of the Pioneer F and G Jupiter missions, for instance, although needed on the grounds of engineering limitations, should not be used to justify a similar emphasis on future missions. The significance of compositional data and the determination of various bulk properties requires suitable instrument payloads and will mean some difficult instrument trades as outer planet spacecraft weight limitations are reached.

Selection of missions and payloads, we have tried to demonstrate, can be made rationally on the basis of their relevance to our fundamental scientific goals in space. Much of the public's obvious dissatisfaction with our nation's space program, we feel, is because they have failed to find a rational structure to the development of space exploration and because the relevance of various space missions to our scientific goals and our fundamental human questions has not been made clear. This situation can be improved by an open, visible, and understandable accounting for the choices that are made in terms of how each choice relates to our larger human and scientific goals.

#### References

<sup>1</sup> Space Science Board, "Space Research: Directions for the Future," NAS Publ. 1403, 1966, National Academy of Sciences, Washington, D.C.

- <sup>2</sup> President's Science Advisory Committee, "The Space Program for the Post-Apollo Period," Feb. 1967, The White House, Wash., D.C.
- <sup>3</sup> Witting, J. M., "Scientific Objectives of Deep Space Investigations: The Origin and Evolution of the Solar Systems," IITR1 TR P-18, Sept. 1966, Illinois Institute of Technology, Chicago, Ill; also Tiffany, O. L. and Zaitzeff, E., eds., *Advanced Space Experiments*, Advances in the astronautical Sciences, American Astronautical Society, 1969, pps. 195–236.
- <sup>4</sup> Witting, J. M., "A Solar System Total Exploration Planning System (STEPS)," IITRI TM M-15, April 1968, Illinois Institute of Technology, Chicago, Ill.
- <sup>5</sup> Jones, J. C., "Scientific Objectives of Total Planetary Exploration," IITRI Rept. P-27, July 1969, Illinois Institute of Technology, Chicago, Ill.
- <sup>6</sup> Mackin, R. J., Jr., et al, "Scientific Questions for the Exploration of the Terrestrial Planets and Jupiter," TM 33-140, Oct. 1, 1968, Jet Propulsion Laboratory, Pasadena, Calif.
- <sup>7</sup> Adams, J. B., et al, "A Strategy for Scientific Exploration of the Terrestrial Planets," *Reviews of Geophysics*, Vol. 7, Aug. 1969, pps. 623–661.
- <sup>8</sup> Jones, A. C., et al, "Observation Requirements for Unmanned Planetary Missions," NAR Contract Rept. SD-70-24, March 11, 1970, North American Rockwell, Downey, Calif.
- <sup>9</sup> Greene T. F., and Thomas, J. R., "A Rationale for Ranking Astronomical Observations," Document D2-121670-1, Apr 1970, The Boeing Company, Seattle, Wash.
- <sup>10</sup> Page, T., "The Origin of the Earth," *Physics Today*, Vol. 1, Oct. 1948, pps. 12–24.
- <sup>11</sup> Ter Haar, D., and Cameron, A. G. W., "Historical Review of Theories of the Origin of the Solar System," *Origin of the Solar System*, R. Jastrow and A. G. W. Cameron, Eds., Academic Press, New York, 1963, pp. 1–37.
- <sup>12</sup> Williams, I. P., and Cremin, A. W., "A Survey of Theories Relating to the Origin of the Solar System," *Quarterly Journal Royal Astronomical Society*, Vol. 9, 1968, pps. 40–62.
- <sup>13</sup> Whipple, F. L., "The History of the Solar System," *Proceedings of the National Academy of Science*, Vol. 52, 1964, pps. 565–594.
- <sup>14</sup> Cameron, A. G. W., "The Origin of the Solar System," *Introduction of Space Science*, 2nd ed., W. N. Hess and G. D. Mead, Eds., Gordon and Breach, New York, 1968, Chap. 15, pp. 611–642.
- <sup>15</sup> Ter Haar, D., "On the Origin of the Solar System," *Annual Review of Astronomy and Astrophysics*, Vol. 5, L. Goldberg, Ed., Annual Reviews, Inc., Palo Alto, Calif., 1967, pp. 267–278.
- <sup>16</sup> Alfven, H., "On the Origin of the Asteroids," *Icarus*, Vol. 3, 1964, p. 3; "On the Origin of the Solar System," *Quarterly Journal Royal Astronomical Society*, Vol. 8, 1967, pp. 215–226.
- <sup>17</sup> Munk, W. H., "Variation of the Earth's Rotation in Historical Time," *The Earth-Moon System*, edited by B. G. Marsden and A. G. W. Cameron, Plenum Press, New York, 1966, pp. 52–69.
- <sup>18</sup> Hennes, J. P., and Fulmer, C. V., "Scientific Foundations of Space Exploration: The Origin and Evolution of the Solar System," Document D2-121363-1 (in preparation), The Boeing Co., Seattle, Wash.
- <sup>19</sup> Space Science Board, "The Outer Solar System," June 1969, National Academy of Sciences, Washington, D.C.
- <sup>20</sup> Alfven, H., and Wilcox, J. M., "On the Origin of the Satellites and Planets," *Astrophysical Journal*, Vol. 136, 1962, pp. 1016-1022.